Alexander Disease Research Bibliography (December 17, 2017)

Recently added:

Boczek NJ, Sigafoos AN, Zimmermann MT, Maus RL, Cousin MA, Blackburn PR, Urrutia R, Clark KJ, Patterson MC, Wick MJ, Klee EW. (2016). Functional characterization of a GFAP variant of uncertain significance in an Alexander disease case within the setting of an individualized medicine clinic. *Clinical Case Reports*. 4, 885-895 [there is much misinformation here, but it is an interesting case report of an uncommon variant]

prepared by Albee Messing

2016

Elmali AD, Çetinçelik Ü, Islak C, Adatepe NU, Savrun FK, Yalçinkaya C. (2016). Familial adult-onset Alexander disease: clinical and neuroradiological findings of three cases. *Noropsikiyatri Arsivi-Archives of Neuropsychiatry*. 53, 169-172 [note that the mutation is reported incorrectly, and should be M415I]

2015

Ahmad O, Rowe DB. (2015). Adult-onset Alexander’s disease mimicking degenerative disease. Practical Neurology 15, 393-395 [one of the patients with onset at 79 years]

Ferreira MC, Dorboz I, Rodriguez D, Boespflug-Tanguy O. (2015). **Screening for GFAP rearrangements in a cohort of Alexander disease and undetermined leukoencephalopathy patients.** *European Journal of Medical Genetics* 58, 466-70 [no deletions or duplications found]

2014

Scola RH, Lorenzoni PJ, Kay CSK, Werneck LC. (2014). **Adult-onset Alexander disease: could facial myokymia be a symptom?** *Arquivos de Neuro-Psiquiatria* 72, 897-898

2013

Hagemann TL, Paylor R, Messing A. (2013). Deficits in adult neurogenesis, contextual fear conditioning and spatial learning in a Gfap mutant mouse model of Alexander disease. *Journal of Neuroscience.* 33, 18698-18706 [describes an entirely new phenotype not previously known to be part of the disease]

Snider NT, Park H, Omary MB. (2013). A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization. *Journal of Biological Chemistry*. 288, 31329-37 (includes comparison of mutant keratin and GFAP)

Melchionda L, Fang M, Wang H, Fugnanesi V, Morbin M, Liu X, Li W, Ceccherini I, Farina L, Savoiardo M, P DA, Zhang J, Costa A, Ravaglia S, Ghezzi D, Zeviani M. (2013). Adult-onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant. *Orphanet Journal of Rare Diseases*. 8, 66 [raises the possibility of a pathogenic mutation in the GFAP-delta form of GFAP (a minor variant) and also germline mosaicism in the mother – however, the evidence for both of these claims is weak]

2012

cord paralysis during sleep. *Journal of Neurology* 259, 2234-2236 [imaging findings reported by Ito et al. 2009]

2011

Chen YS, Lim SC, Chen MH, Quinlan RA, Perng MD. (2011). Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. *Experimental Cell Research* 317, 2252-66

2010

Messing A, Daniels CM, Hagemann TL. (2010). Strategies for treatment in Alexander disease. Neurotherapeutics 7, 507-515 [review] [link to full article]

2009

features and a GFAP allele carrying both the p.Arg79His mutation and the p.Glu223Gln coding variant. *Journal of Neurology* 256, 679-682

Liem RKH and Messing A. (2009). Dysfunctions of neuronal and glial intermediate filaments in disease. *Journal of Clinical Investigation* 119, 1814-1824 [contains review of GFAP in blood or CSF as a potential biomarker for various diseases] [link to full article]

2008

[functional studies reported by Bachetti et al.]

[clinical features reported by Balbi et al.]

2007

[no mutation found]

2006

[Provides additional clinical information on E207K patient initially reported in Van der Knaap, et al, 2005]

[age of onset for this patient would be considered "infantile" according to our classification]

pathway involving filament aggregation and the association of alphaB-crystallin and HSP27.

American Journal of Human Genetics 79, 197-213 [link to full article]

2005

prepared by Albee Messing

2004

2003

[Appears to be same as patient #10 in Gorospe, et al., 2002 - there is considerable misinformation in the literature review]

2002

[Genetic studies reported as patient #4 in Shiroma et al., 2003]

[see Sawaishi et al., 1999, for more clinical detail on this patient]

2001

2000

1999

prepared by Albee Messing

1998

1997

1996

1995

1994

1993

1992

1991

1990

prepared by Albee Messing
1989

1988

1987

Sorjonen DC, Cox NR, Kwapien RP. (1987). Myeloencephalopathy with eosinophilic refractile bodies (Rosenthal fibers) in a Scottish terrier. *Journal of the American Veterinary Medical Association* 190, 1004-1006

1986

1985

1984

1983

1982

1981

1980

1979

1977

1976

1974

1973

1972

1970

1968

1967

1966

1964

1962

1959

1953

1952
Stevenson LD, Vogel FS. (1952). A case of macrocephaly associated with feeble-mindedness and encephalopathy with peculiar deposits throughout the brain and spinal cord. *Ciencia* (Méx.) 12, 71-74

1949

1898