Alexander Disease Research Bibliography (September 13, 2017)

Recently added:

2017

2016

Alfke H, Schimrigk S. (2016). *Tumor-mimicking brainstem lesion in an adult with Alexander disease*. Rofo-Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren. 188, 869-870 [no genetic diagnosis given, although it says there was one]

Elmali AD, Çetinçelik Ü, Islak C, Adatepe NU, Savrun FK, Yalçinkaya C. (2016). Familial adult-onset Alexander disease: clinical and neuroradiological findings of three cases. *Noropsikiyatri Arsivi-Archives of Neuropsychiatry*. 53, 169-172 [note that the mutation is reported incorrectly, and should be M415I]

2015

2014

2013

Hagemann TL, Paylor R, Messing A. (2013). Deficits in adult neurogenesis, contextual fear conditioning and spatial learning in a Gfap mutant mouse model of Alexander disease. Journal of Neuroscience. 33, 18698-18706 [describes an entirely new phenotype not previously known to be part of the disease]

Snider NT, Park H, Omary MB. (2013). A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization. Journal of Biological Chemistry. 288, 31329-37 (includes comparison of mutant keratin and GFAP)

Melchionda L, Fang M, Wang H, Fugnanesi V, Morbin M, Liu X, Li W, Ceccherini I, Farina L, Savoiardo M, P DA, Zhang J, Costa A, Ravaglia S, Ghezzi D, Zeviani M. (2013). *Adult-onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant*. Orphanet Journal of Rare Diseases 8, 66 [raises the possibility of a pathogenic mutation in the GFAP-delta form of GFAP (a minor variant) and also germline mosaicism in the mother – however, the evidence for both of these claims is weak]

prepared by Albee Messing

2012

Hagemann TL, Jobe EM, Messing A. (2012) Genetic ablation of Nrf2/antioxidant response pathway in Alexander disease mice reduces hippocampal gliosis but does not impact survival. PLoS ONE 7, e37304 [link to full article]

2011

Chen YS, Lim SC, Chen MH, Quinlan RA, Perng MD. (2011). Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. *Experimental Cell Research* 317, 2252-66

2010

2009

Liem RKH and Messing A. (2009). Dysfunctions of neuronal and glial intermediate filaments in disease. *Journal of Clinical Investigation* 119, 1814-1824 [contains review of GFAP in blood or CSF as a potential biomarker for various diseases] [link to full article]
2008

preparing by Albee Messing

2007

2006

[Provides additional clinical information on E207K patient initially reported in Van der Knaap, et al, 2005]

2005

2004

2003

2002
[Genetic studies reported as patient #4 in Shiroma et al., 2003]

[see Sawaishi et al., 1999, for more clinical detail on this patient]

Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A. (2001). **Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease.** Nature Genetics 27, 117-120 [first description of genetics] [link to full article]

2000

preparation by Albee Messing

1999

1998

1997

1996

1995

prepared by Albee Messing

1994

1993

1992

1991

1990

1989

1988

prepared by Albee Messing

1987

Sorjonen DC, Cox NR, Kwapien RP. (1987). Myeloencephalopathy with eosinophilic refractile bodies (Rosenthal fibers) in a Scottish terrier. Journal of the American Veterinary Medical Association 190, 1004-1006

1986

1985

1984

1983

1982

1981

1980

1979

1977

1976

1974

1973

1972

1970

preparation by Albee Messing

1968

1967

1966

1964

1962

1959

prepared by Albee Messing
1953

1952

Stevenson LD, Vogel FS. (1952). A case of macrocephaly associated with feeble-mindedness and encephalopathy with peculiar deposits throughout the brain and spinal cord. *Ciencia (Méx.)* 12, 71-74

1949

1898