Alexander Disease Research Bibliography (updated March 13, 2016)

Recently added:

2015

prepared by Albee Messing
Knaap MS, Messing A. CSF and blood levels of GFAP in Alexander disease. eNeuro DOI: 10.1523/ENEURO.0080-15.2015 [full text]

2014

2013

prepared by Albee Messing

Hagemann TL, Paylor R, Messing A. (2013). Deficits in adult neurogenesis, contextual fear conditioning and spatial learning in a Gfap mutant mouse model of Alexander disease. Journal of Neuroscience. 33, 18698-18706 [describes an entirely new phenotype not previously known to be part of the disease]

Snider NT, Park H, Omary MB. (2013). A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization. Journal of Biological Chemistry. 288, 31329-37 (includes comparison of mutant keratin and GFAP)

Melchionda L, Fang M, Wang H, Fugnanesi V, Morbin M, Liu X, Li W, Ceccherini I, Farina L, Savoiardo M, P DA, Zhang J, Costa A, Ravaglia S, Ghezzi D, Zeviani M. (2013). Adult-onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant. Orphanet Journal of Rare Diseases. 8, 66 [raises the possibility of a pathogenic mutation in the GFAP-delta form of GFAP (a minor variant) and also germline mosaicism in the mother – however, the evidence for both of these claims is weak]

Jany, P.L., Hagemann, T.L., and Messing, A. GFAP expression as an indicator of disease severity in mouse models of Alexander disease. *ASN Neuro* 5:e00109.doi:10.1042/AN20130003 [link to full article and podcast]

2012

2011

Chen YS, Lim SC, Chen MH, Quinlan RA, Perng MD. (2011). *Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability*. *Experimental Cell Research* 317, 2252-66

prepared by Albee Messing

2010

Messing A, Daniels CM, Hagemann TL. (2010). Strategies for treatment in Alexander disease. Neurotherapeutics 7, 507-515 [review] [link to full article]

prepared by Albee Messing
In vitro treatments with ceftriaxone promote elimination of mutant glial fibrillary acidic protein and transcription down-regulation. *Experimental Cell Research* 316, 2152-65

2009

Liem RKH and Messing A. (2009). Dysfunctions of neuronal and glial intermediate filaments in disease. Journal of Clinical Investigation 119, 1814-1824 [contains review of GFAP in blood or CSF as a potential biomarker for various diseases] [link to full article]

2008

2007

2006

[Provides additional clinical information on E207K patient initially reported in Van der Knaap, et al, 2005]

[age of onset for this patient would be considered "infantile" according to our classification]

prepared by Albee Messing
pathway involving filament aggregation and the association of alphaB-crystallin and HSP27. *American Journal of Human Genetics* 79, 197-213 [link to full article]

2005

2004

2003

prepared by Albee Messing

[same patients for whom clinical/genetic data reported in Meins et al., 2002]

[Appears to be same as patient #10 in Gorospe, et al., 2002 - there is considerable misinformation in the literature review]

2002

[Genetic studies reported as patient #4 in Shiroma et al., 2003]

prepared by Albee Messing

2001

2000

prepared by Albee Messing
1999

1998

prepared by Albee Messing

1997

1996

1995

1994

1993

1992

1991

1990

1989

1988

1987

Sorjonen DC, Cox NR, Kwapien RP. (1987). Myeloencephalopathy with eosinophilic refractile bodies (Rosenthal fibers) in a Scottish terrier. Journal of the American Veterinary Medical Association 190, 1004-1006

1986

1985

1984

prepared by Albee Messing

1983

1982

1981

1980

1979

1977

prepared by Albee Messing
1976

1974

1973

1972

1970

1968

1966

1964

[Sixth case, first use of the name "Alexander's disease."]

1962

1959

1953

1952

Stevenson LD, Vogel FS. (1952). A case of macrocephaly associated with feeble-mindedness and encephalopathy with peculiar deposits throughout the brain and spinal cord. Ciencia (Méx.) 12?, 71

1949

[First description of a child with Alexander disease]
1898