Alexander Disease Research Bibliography (updated February 6, 2016)

Recently added:

2015

prepared by Albee Messing

2014

2013

Hagemann TL, Paylor R, Messing A. (2013). *Deficits in adult neurogenesis, contextual fear conditioning and spatial learning in a Gfap mutant mouse model of Alexander disease.* *Journal of Neuroscience.* 33, 18698-18706 [describes an entirely new phenotype not previously known to be part of the disease]

Snider NT, Park H, Omary MB. (2013). A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization. *Journal of Biological Chemistry.* 288, 31329-37 (includes comparison of mutant keratin and GFAP)

Melchionda L, Fang M, Wang H, Fugnanesi V, Morbin M, Liu X, Li W, Ceccherini I, Farina L, Savoiardo M, P DA, Zhang J, Costa A, Ravaglia S, Ghezzi D, Zeviani M. (2013). Adult-onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant. *Orphanet Journal of Rare Diseases.* 8, 66 [raises the possibility of a pathogenic mutation in the GFAP-delta form of GFAP (a minor variant) and also germline mosaicism in the mother – however, the evidence for both of these claims is weak]

2012

prepared by Albee Messing

neurological symptoms for over 12 years, despite insidiously progressive cervicomedullary atrophy. *Neurological Sciences* 33, 1389-1392.

2011

Chen YS, Lim SC, Chen MH, Quinlan RA, Perng MD. (2011). *Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability*. *Experimental Cell Research* 317, 2252-66

prepared by Albee Messing

2010

prepared by Albee Messing
2009

prepared by Albee Messing

Liem RKH and Messing A. (2009). Dysfunctions of neuronal and glial intermediate filaments in disease. *Journal of Clinical Investigation* 119, 1814-1824 [contains review of GFAP in blood or CSF as a potential biomarker for various diseases] [link to full article]

2008

2007

(2007). **GFAP mutations and polymorphisms in 13 unrelated Italian patients affected by Alexander disease.** *Clinical Genetics* 72, 427-433

2006

pathway involving filament aggregation and the association of alphaB-crystallin and HSP27.
A
mERICAN JOURNAL OF HUMAN GENETICS 79, 197-213 [link to full article]

van der Knaap MS, Ramesh V, Schiffmann R, Blaser S, Kyllerman M, Gholkar A, Elliso
lEXANDER DISEASE: VENTRICULAR GARLANDS AND ABNORMALITIES OF THE MEDULLA AND SPINAL CORD. Neurology 66, 494-8

2005

2004

prepared by Albee Messing

2003

prepared by Albee Messing

[same patients for whom clinical/genetic data reported in Meins et al., 2002]

[Appears to be same as patient #10 in Gorospe, et al., 2002 - there is considerable misinformation in the literature review]

2002

[Genetic studies reported as patient #4 in Shiroma et al., 2003]

2001

prepared by Albee Messing

2000

prepared by Albee Messing
1999

1998

prepared by Albee Messing

1997

1996

1995

1994

1993

1992

23

prepared by Albee Messing

1991

[Included two Alexander disease patients]

prepared by Albee Messing

1990

Wardinsky TD, Weinberger E, Pagon RA, Clarren SK, Thuline HC. (1990). *Partial deletion of the long arm of chromosome 11 [del(11)(q23.3----qter)] with abnormal white matter* [see comments]. American Journal of Medical Genetics 35, 60-63

1989

1988

1987

Sorjonen DC, Cox NR, Kwapien RP. (1987). *Myeloencephalopathy with eosinophilic refractile bodies (Rosenthal fibers) in a Scottish terrier*. *Journal of the American Veterinary Medical Association* 190, 1004-1006

1986

1985

1984

1983

1982

1981

prepared by Albee Messing

1980

1979

1977

1976

1974

1973

1972

1970

1968

prepared by Albee Messing
1966

1964
[Sixth case, first use of the name "Alexander's disease."]

1962

1959

1953

1952
Stevenson LD, Vogel FS. (1952). A case of macrocephaly associated with feeble-mindedness and encephalopathy with peculiar deposits throughout the brain and spinal cord. Ciencia (Méx.) 12?, 71

1949
[First description of a child with Alexander disease]
1898

31

prepared by Albee Messing