Efficacy of a Phonetic-Based Approach

Case Study 1

Subject
- 4 1/2 year old male
- Speech usually intelligible with contextual cues because of vowel accuracy, normal prosody, and complementary gestures and facial expressions
- Complete vowel/diphthong inventory
- Verbal language used for communication
- Comprehension adequate for age range

Challenges
- Limited skill in consonant production
- Diagnosis of childhood apraxia of speech
- Consonant inventory: /b/ (I), /f/ (I), /h/ (I), /l/ (I), /m/ (I), /n/ (I), /p/ (I), /s/ (I), /t/ (I), /v/ (I), /w/ (I), /z/ (I), /th/ (I), /n/ (I), /l/ (I), /r/ (I), /s/ (I), /t/ (I)
- Syntactic analysis not possible because of limited consonant inventory
- Speech usually intelligible with contextual cues because of vowel accuracy, normal prosody, and complementary gestures and facial expressions

Treatment Program

Objective
Production of /t/ (I), /n/ (I), /d/ (I), /s/ (I), and /z/ (I) at sound, syllable and word level

Structure of the Approach
- Use of the Phonetic-Based Approach
- In addition, because all targeted sounds were challenging, /th/ (I) and /n/ (I) were practiced at the word and carrier phrase levels for short periods during each session to provide opportunities for “easy success.”

Parental Input and Informed Treatment Decisions

Parents demonstrated a voiced non-speech sound the child had produced with his tongue sticking out during vocal play with his 1-year-old sister: because of the tongue control that the behavior demonstrated, the tongue /n/ sound was selected to begin shaping production of /n/ and /d/ and later /s/ with positive outcomes.

Learning Challenges and Effective Strategies

- Novel air direction during production of /p/ (I), /b/ (I), and /m/ (I), and resistance to inclusion of the nasal sounds because of nasal defensiveness

Strategy
Within four sessions, the child was receptive to the SLP’s use of two felt finger-puppets (called “our hug-nose friends”) to occlude the nares to train oral direction of the air stream.

- Inability to achieve tongue placement for /t/ and /d/ (I)

Strategy
Work began with a gross approximation of the sounds while sticking out the tongue; the tongue was then retracted in small increments over several sessions to achieve placement and control sound production.

- Inability to achieve appropriate control of the air stream and tongue placement for /s/ (I)

Strategy
Work began with an approximation of the sound while sticking the tongue out and then achieving sound production. A chip was removed when the SLP needed to remind him explicitly of the tongue movement.

- Difficulty maintaining during challenging speech tasks

Strategy
In addition to rotating between more and less challenging speech targets, the child was periodically blocked on a single sound or sound cluster to maintain focus. Later, two sounds were awarded for correct production, elicited self-corrected, and self-sustained rehearsal. Each designated number of /s/ received a small reward that his parents delivered.

Treatments and Outcomes

- Targeted sounds that were successfully evoked (i.e., /th/ (I), /n/ (I), /l/ (I), /d/ (I), /s/ (I), and /z/ (I)) were produced; however, deletions were sometimes replaced with stop substitutions.
- Non-targeted sounds (i.e., /f/ (I), /v/ (I), /w/ (I), /r/ (I), /l/ (I), /s/ (I), /t/ (I), /n/ (I)) were not produced; however, deletions were sometimes replaced with stop substitutions.

References

Acknowledgments

Our sincere thanks to the child and parents who participated in this project. This research is supported by the National Institutes of Deafness and Other Communication Disorders, NIH/NIH (NICHD). Copies of this paper and related research are available at the Phonology Project and Child SLP Sites. [http://www.waisman.wisc.edu/phonology/].