University of Wisconsin–Madison
Loading Events

« All Events

Seminar – Jayshree Samanta, MBBS, PhD – “Role of GPNMB in Neural Stem Cells”

December 7 @ 12:00 pm - 1:00 pm

Jayshree Samanta, M.B.B.S., Ph.D.
Jayshree Samanta, M.B.B.S., Ph.D.

Jayshree Samanta, MBBS, PhD
University of Wisconsin–Madison

 

About the Speaker: My lab focuses on how neural stem cells generate myelin in the brain during development as well as during recovery from a demyelinating insult or remyelination.  Our primary goal is to understand the disease process and identify factors that can help repair the brain in disorders of myelin, including Down Syndrome (DS), Pelizaeus Merzbacher Disease (PMD) and Multiple Sclerosis (MS). These diseases cause significant morbidity in humans; however their pathogenesis and repair mechanisms are unknown.

The myelin sheath is a specialized membrane that wraps around the nerves in the brain. In demyelinating diseases, myelin is disrupted resulting in severe neurological defects due to conduction block ultimately leading to the loss of axons. The goal in inherited myelin diseases like PMD and DS is to myelinate axons that have not been ensheathed; while in MS, the goal is to ensheath the axons that have lost their myelin i.e. demyelinated axons. Myelin is synthesized by oligodendrocytes that can simultaneously enwrap many axons. After a demyelination event, new oligodendrocytes are generated by stem cells in the brain but this process remains incomplete resulting in partial repair. Our goal is to further understand the molecular underpinnings of signaling pathwaysin neural stem cells during myelination and remyelination. We use mouse models of myelin diseases and genetically remove components of each pathway in the neural stem cells to study their effect on remyelination. These studies will provide new insights into the role of the signaling pathways in regulating activation and recruitment of stem cells in myelin disorders. Understanding the origin of remyelinating cells and the signals which trigger their activation, migration and differentiation has major therapeutic implications for myelin disorders.

 

For Further Information: Contact Teresa Palumbo at 608.263.5837 or palumbo@waisman.wisc.edu

The seminar series is funded by the John D. Wiley Conference Center Fund, the Friends of the Waisman Center and NIH grant U54 HD090256.

Details

Date:
December 7
Time:
12:00 pm - 1:00 pm
Event Category:
Event Tags: