Management of OSA in children with Down syndrome: the otolaryngologist’s perspective

Tony Kille, MD
Associate Professor
Pediatric Otolaryngology
Department of Surgery

Michael Puricelli, MD
Assistant Professor
Pediatric Otolaryngology
Department of Surgery
Objectives:

- Review the clinical features and common otolaryngologic manifestations of Down syndrome
- Discuss the mechanisms and predisposing factors for sleep-disordered breathing in children with Down syndrome
- Discuss the initial approach and management options for OSA in children with Down syndrome – as well as typical outcomes
- Identify treatment options and expectations for persistent OSA after T&A in children with Down syndrome
- Discuss emerging technologies and techniques for management of complex, persistent OSA in children with Down syndrome
Down syndrome manifestations

- Characterized by a variety of dysmorphic features, congenital malformations, and other medical conditions
 - Not all manifestations are present in each affected person
 - Variable impact of these manifestations (mild → profound)
- Manifestations impact nearly all body systems, including multiple and significant issues involving the head & neck
ENT manifestations of Down syndrome

- Ears/hearing
 - Narrow ear canals
 - Chronic middle ear infections/fluid
 - Inner ear abnormalities
- Chronic rhinosinusitis
 - Smaller sinuses and drainage pathways
 - Small nasal passageway
 - Immunologic deficiencies
ENT manifestations of Down syndrome

- **Sleep apnea**
 - Smaller midface/jaw
 - Small nasal passageway
 - Macroglossia (larger tongue), lingual tonsil hypertrophy, glossoptosis (backward collapse of tongue)
 - Small upper airway and medially positioned tonsils
 - Decreased tone
 - Obesity

- **Laryngotracheal anomalies**
 - Floppy supraglottis/laryngomalacia
 - Complete tracheal rings
 - Narrowing below vocal cords
 - Tracheal bronchus

- **Dysphagia**
 - Hypotonia
 - Motor coordination
 - Reflux
OSA prevalence in children with Down syndrome

- Retrospective cross-sectional study in large cohort of DS patients in Belgium
- 122 patients categorized both by age groups (0-5, 5-12, 12-18) as well as parental report of sleep-disordered breathing symptoms/signs
 - Overall prevalence of OSA (defined as AHI > 2) was 66.4%
 - Mild: 30%, moderate: 25%, severe: 45%
 - OSA confirmed by PSG in > 50% of patients in all age groups
 - Significant inverse correlation of age with AHI
 - OSA in symptomatic patients: 75.7% (and OSA tended to be more severe)
 - OSA in asymptomatic patients: 53.8% (I)
Predictors of OSA in DS

Retrospective Study of Obesity in Children with Down Syndrome

Janet S. Basil, MS1,2, Stephanie L. Santoro, MD3,4, Lisa J. Martin, PhD1,2, Katherine Wusik Healy, MS1,2, Barbara A. Chini, MD1,2, and Howard M. Saal, MD1,2

(J Pediatr 2016;173:143-8)

- Large sample of pediatric DS patients with growth measurements and PSG data
- DS significantly more likely to be obese than age matched controls (47.8% vs 12%)
- OSA (AHI > 2) in entire cohort: 74%
 - 85% in obese, 64% in non-obese
 - Moderate-severe OSA (AHI > 5) more likely in obese
Management of OSA in DS: Observation?

- For mild OSA, AHI “normalizes” over 7 months in 46% of children without T&A and in 79% with T&A
 - In obese/overweight, normalization in 29% of non-surgical and in 68% of T&A

- For mild OSA in Down syndrome managed with observation or medication (fluticasone or montelukast):
 - OSA resolved in only 1/13 (7.7%) with observation and 1/10 (10%) with meds
 - Mild OSA persisted in 10/13 (76.9%) with observation and 6/10 (60%) with meds
 - Worsened to moderate or severe in 2/13 (15.4%) with observation and 3/10 (30%) with meds

Management of OSA in DS: PAP?

- Can effectively improve sleep parameters and gas exchange, as well as adverse sequelae of OSA
- However… tolerance and long term adherence is often limited, particularly in those with neurocognitive or behavioral problems
- Some studies report higher rates of adherence with inpatient initiation and modification of pressure settings

Management of OSA in DS: Tonsillectomy & Adenoidectomy?

- Considered first-line treatment of OSA in pediatric patients
- *OSA cure rate of 60-80% of non-syndromic patients

Management of OSA in Down Syndrome: Tonsillectomy & Adenoidectomy?

- Helpful, but high rate of persistent OSA...
 - Merrell & Schott, 2007: ~60% with abnormal post-op PSG; no improvement with addition of lateral pharyngoplasty or pillar plication
 - Shete, 2010: only 18% cure rate
 - Thottam, 2015: Significant improvement in AHI to mild-moderate levels, but only ~5% achieved normal PSG. Majority of those with severe OSA had residual OSA.
 - Abijay, 2021:
 - Complete resolution of OSA in only 5%
 - Mean AHI reduction 27.9 → 14.0; also improvements in arousal index and time O2 < 90%
 - 60% of patients with 50% or more reduction in AHI
 - Persistent OSA associated with age, asthma, and obesity
 - 15.8% with worsening AHI after T&A
Approach to persistent OSA after T&A

- Review sleep study
- Review symptoms
- Room for improvement with medical approach?
 - Poorly controlled environmental allergies
 - Nasal steroid & saline for significant chronic rhinitis
 - Leukotriene receptor antagonist
- Is PAP an option?
Physical Exam:
Sleep apnea is a problem of the upper airway (tip of nose → trachea)

- **General:**
 - voice
 - Stridor
 - BMI
 - Midface and mandibular hypoplasia
 - General tone

- **Nasal:**
 - Structural integrity
 - Septal deviation
 - Mucosal edema
 - Inferior turbinate hypertrophy
 - Polyps/masses
Physical Exam

- Oral cavity:
 - Tonsils
 - Palate
 - Tongue
 - Lingual tonsil (?)
 - Posterior pharyngeal mass
Physical Exam

- Flexible fiberoptic exam
 - Posterior nasal passage
 - Adenoid re-growth
 - Pharynx – asymmetry, collapse, lesions
 - Tongue base – lingual tonsil, masses
 - Larynx – laryngomalacia, masses, cord mobility
Limitations

- Anatomy during office exam ≠ anatomy during sleep
 - Patient position
 - Pharyngeal & laryngeal tone
 - Poor cooperation
State-specific examinations

- Drug-induced sleep endoscopy (DISE)
- Cine MRI
DISE – what are we looking at?

* For each location, assess view obtained at most and least obstructed points in respiratory cycle
Causes of Persistent OSA in DS after T&A

- Common sites include:
 - Tongue (size, position, or both)
 - Lingual tonsil enlargement
 - Collapse of laryngeal structures above the vocal cords (laryngomalacia)
Lingual tonsillectomy
Lingual Tonsillectomy

Meta-analysis (4 studies, 73 patients) of lingual tonsillectomy for persistent OSA in non-syndromic pediatric patients

Mean reduction AHI 8.9 events/hour

Success rates:
- 17% with AHI < 1
- 51% with AHI < 5
- Similar rate/severity of complications compared with palatal tonsillectomy
Lingual tonsillectomy in DS

Polysomnographic Outcomes Following Lingual Tonsillectomy for Persistent Obstructive Sleep Apnea in Down Syndrome

J. Drew Prosser, MD; Sally R. Shott, MD; Oscar Rodriguez, MD; Narong Simakajornboon, MD; Jareen Meinzen-Derr, PhD; Stacey L. Ishman, MD, MPH

- Median AHI 9.1 → 3.7
- Mean oxygen saturation 84% → 89%
- Success rates:
 - 19% with AHI < 1
 - 61.9% with AHI < 5
Midline Posterior Glossectomy
Midline Posterior Glossectomy and Lingual Tonsillectomy in Obese and Nonobese Children With Down Syndrome: Biomarkers for Success

Evan J. Propst, MD, MSc, FRCSC®; Reshma Amin, MD, FRCPC, MSc®; Natasha Talwar; Michele Zaman; Allison Zweerink, NP-Peds; Susan Blaser, MD, FRCPC; Christian Zaarour, MD, BSc; Igor Luginbuehl, MD; Cengiz Karsli, MD, FRCPC; Albert Aziza, MHSc, BHA, MRTR; Christopher Forrest, MD, MSc, FRCSC, FACS; James Drake, MBBCH, FRCSC; Indra Narang, MBBCH, MD

<table>
<thead>
<tr>
<th>TABLE II. Polysomnography Results Pre- and Post-MPG With or Without LT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>Age (yrs), mean (SD) [range]</td>
</tr>
<tr>
<td>Time supine (%)</td>
</tr>
<tr>
<td>Obstructive AHI</td>
</tr>
<tr>
<td>Normal/overweight remained normal/overweight</td>
</tr>
<tr>
<td>Normal/overweight became obese</td>
</tr>
<tr>
<td>Obese remained obese</td>
</tr>
</tbody>
</table>
Supraglottoplasty for laryngomalacia

- Systematic review of 4 studies
- Total of 77 patients
- Mean age = 5.7 years
- Mean AHI: pre-op 12.1 → post-op 4.4
- Success:
 - AHI < 5: 58%
 - AHI < 1: 16%

Hypoglossal nerve stimulation (Inspire)

- Strollo, 2014:
 - Significant improvement in AHI and QOL in adults with OSA related to TBO
Hypoglossal nerve stimulation in pediatric DS

- **Diercks, 2016:**
 - 14 year old with DS requiring tracheostomy for persistent OSA
 - AHI 48.5 → 3.4; able to decannulate

- **Yu, 2022:**
 - Multi-center clinical trial of safety and effectiveness for persistent OSA in DS
 - 10-22 years old; AHI > 10
 - Exclusion: central apneas > 25%, BMI > 95%, AHI > 50
 - Results:
 - Mean decrease AHI: 12.9 events/hour
 - 30/41 (73.2%) with AHI < 10
 - 14/41 (34.1%) with AHI < 5
 - 3/41 (7.3%) with AHI < 2
 - Significant improvements in QOL as measured by parental OSA-18 survey
 - Acceptable adverse event profile