Darcie L. Moore, PhD
Position title: Associate Professor, Neuroscience

PhD, University of Miami
Contact Information
1111 Highland Avenue
Room 5505 WIMR-II
Madison, WI 53705
(608) 265-7836
darcie.moore@wisc.edu
Moore Lab Website
Research Statement
There is limited regenerative capacity in the adult mammalian central nervous system (CNS). My lab studies this loss of regeneration in two different contexts:
Adult neurogenesis, where neural stem cells (NSCs) make newborn neurons in the adult brain
CNS axon regeneration following an injury
Specifically we determine how changes during development and aging influence these aspects of regeneration.
Adult neurogenesis
NSCs in the hippocampus generate newborn neurons throughout life in a process referred to as adult neurogenesis. Adult NSCs are primarily quiescent, in a reversible G0 state. Upon receiving a signal, quiescent NSCs (qNSCs) activate, entering the cell cycle to initiate population expansion, differentiation, maturation, and integration. During aging and disease, extrinsic and intrinsic factors drive adult hippocampal NSCs deeper into quiescence, reducing NSC quiescence exit, ultimately contributing to cognitive decline.
My lab works to identify factors controlling NSC quiescence and quiescence exit to improve neurogenesis and ultimately identify targets to enhance cognitive function. We specifically have focused our efforts in the following areas: Proteostasis, translational control, asymmetric inheritance of specific cellular cargoes during mitosis, creation of imaging tools to identify qNSCs, how this translates to cancer.
CNS Axon Growth and Regeneration
Despite decades of study in rodent models, there is still no “cure” for CNS injuries such as spinal cord injury (SCI). The lack of human-specific and age-specific models of axon growth may be a crucial limiting factor in identifying translational targets for treatment of human SCI. Thus, we used direct reprogramming of human fibroblasts to neurons, bypassing pluripotency to maintain the age of the original cell, to create human neurons of different ages. We hypothesize that a species- and age-specific model will lead to the identification of axon growth regulators that could be targeted for development of more effective therapies for human SCI. Our research in this area has focused on: the developmental loss of intrinsic axon growth ability in human neurons, epigenetic regulation of axon growth and regeneration.
To address these questions, the Moore lab uses cell biology, biochemistry, molecular biology, genetics, and computational approaches. We also specifically focus on using advanced live imaging technologies, including FLIP, FLIM, FRAP, photoactivation, 4D timelapse, in vivo cranial window imaging, and computer learning-based high-throughput imaging to address our scientific questions.
Research Topics
Neural Development, Spinal Cord Injury, Stem Cells
Selected Publications
-
Samimi, K., Pasachhe, O., Guzman, E. C., Riendeau, J., Gillette, A. A., Pham, D. L., Wiech, K. J., Moore, D. L., & Skala, M. C. (2024). Autofluorescence lifetime flow cytometry with time-correlated single photon counting. Cytometry. Part A : the journal of the International Society for Analytical Cytology, 105(8), 607–620. https://doi.org/10.1002/cyto.a.24883
-
Morrow, C. S., Tweed, K., Farhadova, S., Walsh, A. J., Lear, B. P., Roopra, A., Risgaard, R. D., Klosa, P. C., Arndt, Z. P., Peterson, E. R., Chi, M. M., Harris, A. G., Skala, M. C., & Moore, D. L. (2024). Autofluorescence is a biomarker of neural stem cell activation state. Cell stem cell, 31(4), 570–581.e7. https://doi.org/10.1016/j.stem.2024.02.011
-
Morrow, C. S., Gillette, A. A., Skala, M. C., & Moore, D. L. (2024). Classification of Neural Stem Cell Activation State In Vitro using Autofluorescence. Journal of visualized experiments : JoVE, (206), 10.3791/63110. https://doi.org/10.3791/63110
-
Souder, D. C., McGregor, E. R., Rhoads, T. W., Clark, J. P., Porter, T. J., Eliceiri, K., Moore, D. L., Puglielli, L., & Anderson, R. M. (2023). Mitochondrial regulator PGC-1a in neuronal metabolism and brain aging. bioRxiv : the preprint server for biology, 2023.09.29.559526. https://doi.org/10.1101/2023.09.29.559526
-
Scandella, V., Petrelli, F., Moore, D. L., Braun, S. M. G., & Knobloch, M. (2023). Neural stem cell metabolism revisited: a critical role for mitochondria. Trends in endocrinology and metabolism: TEM, 34(8), 446–461. https://doi.org/10.1016/j.tem.2023.05.008
-
Lear, B. P., & Moore, D. L. (2023). Moving CNS axon growth and regeneration research into human model systems. Frontiers in neuroscience, 17, 1198041. https://doi.org/10.3389/fnins.2023.1198041
-
Lear, B. P., Thompson, E. A. N., Rodriguez, K., Arndt, Z. P., Khullar, S., Klosa, P. C., Lu, R. J., Morrow, C. S., Risgaard, R., Peterson, E. R., Teefy, B. B., Bhattacharyya, A., Sousa, A. M. M., Wang, D., Benayoun, B. A., & Moore, D. L. (2023). Age-maintained human neurons demonstrate a developmental loss of intrinsic neurite growth ability. bioRxiv : the preprint server for biology, 2023.05.23.541995. https://doi.org/10.1101/2023.05.23.541995
-
Morrow, C. S., Arndt, Z. P., Klosa, P. C., Peng, B., Zewdie, E. Y., Benayoun, B. A., & Moore, D. L. (2022). Adult fibroblasts use aggresomes only in distinct cell-states. Scientific reports, 12(1), 15001. https://doi.org/10.1038/s41598-022-19055-1
-
Morrow, C. S., Porter, T. J., & Moore, D. L. (2021). Fluorescent tagging of endogenous proteins with CRISPR/Cas9 in primary mouse neural stem cells. STAR protocols, 2(3), 100744. https://doi.org/10.1016/j.xpro.2021.100744
-
Bin Imtiaz, M. K., Jaeger, B. N., Bottes, S., Machado, R. A. C., Vidmar, M., Moore, D. L., & Jessberger, S. (2021). Declining lamin B1 expression mediates age-dependent decreases of hippocampal stem cell activity. Cell stem cell, 28(5), 967–977.e8. https://doi.org/10.1016/j.stem.2021.01.015
-
Morrow, C. S., & Moore, D. L. (2020). Vimentin’s side gig: Regulating cellular proteostasis in mammalian systems. Cytoskeleton (Hoboken, N.J.), 77(11), 515–523. https://doi.org/10.1002/cm.21645
-
Morrow, C. S., Porter, T. J., Xu, N., Arndt, Z. P., Ako-Asare, K., Heo, H. J., Thompson, E. A. N., & Moore, D. L. (2020). Vimentin Coordinates Protein Turnover at the Aggresome during Neural Stem Cell Quiescence Exit. Cell stem cell, 26(4), 558–568.e9. https://doi.org/10.1016/j.stem.2020.01.018
-
Morrow, C. S., & Moore, D. L. (2019). Stem Cell Aging? Blame It on the Niche. Cell stem cell, 24(3), 353–354. https://doi.org/10.1016/j.stem.2019.02.011
-
Apara A, Galvao J, Wang Y, Blackmore M, Trillo A, Iwao K, Brown DP Jr, Fernandes KA, Huang A, Nguyen T, Ashouri M, Zhang X, Shaw PX, Kunzevitzky NJ, Moore DL, Libby RT, Goldberg JL. (2017). KLF9 and JNK3 Interact to Suppress Axon Regeneration in the Adult CNS. Journal of Neuroscience, 37(40):9632-9644. doi: 10.1523/JNEUROSCI.0643-16.2017.