Daifeng Wang, PhD
Position title: Associate Professor, Biostatistics & Medical Informatics, Computer Sciences
PhD, University of Texas – Austin
Postdoc, Yale University
Core Director, Data Science
Contact Information
Waisman Center
1500 Highland Avenue
Room 517
Madison, WI 53705
daifeng.wang@wisc.edu
Daifeng Lab
Research Statement
Daifeng’s research focuses on developing machine learning approaches and bioinformatics tools to analyze multimodal data in complex brains and brain disorders for understanding underlying cellular and molecular mechanisms. Particularly, he is working on deciphering functional genomics and gene regulation for disease and clinical phenotypes across neurodevelopmental, neuropsychiatric, and neurodegenerative diseases, aiming to discover potential novel mechanisms and genomic engineering principles for precision medicine.
Selected Publications
-
Huang, X., Kumarage, P., Sandoval, S., Zhao, X., & Wang, D. (2024). Protocol for comparative gene expression data analysis between brains and organoids using a cloud-based web app. STAR protocols, 5(4), 103375. Advance online publication. https://doi.org/10.1016/j.xpro.2024.103375
-
Shen, M., Sirois, C. L., Guo, Y., Li, M., Dong, Q., Méndez-Albelo, N. M., Gao, Y., Khullar, S., Kissel, L., Sandoval, S. O., Wolkoff, N. E., Huang, S. X., Xu, Z., Bryan, J. E., Contractor, A. M., Korabelnikov, T., Glass, I. A., Doherty, D., Birth Defects Research Laboratory, Levine, J. E., … Zhao, X. (2023). Species-specific FMRP regulation of RACK1 is critical for prenatal cortical development. Neuron, 111(24), 3988–4005.e11. https://doi.org/10.1016/j.neuron.2023.09.014
-
Chandrashekar, P. B., Alatkar, S., Wang, J., Hoffman, G. E., He, C., Jin, T., Khullar, S., Bendl, J., Fullard, J. F., Roussos, P., & Wang, D. (2023). DeepGAMI: deep biologically guided auxiliary learning for multimodal integration and imputation to improve genotype-phenotype prediction. Genome medicine, 15(1), 88. https://doi.org/10.1186/s13073-023-01248-6
-
Alatkar, S. A., & Wang, D. (2023). CMOT: Cross-Modality Optimal Transport for multimodal inference. Genome biology, 24(1), 163. https://doi.org/10.1186/s13059-023-02989-8
-
Guo, Y., Shen, M., Dong, Q., Méndez-Albelo, N. M., Huang, S. X., Sirois, C. L., Le, J., Li, M., Jarzembowski, E. D., Schoeller, K. A., Stockton, M. E., Horner, V. L., Sousa, A. M. M., Gao, Y., Birth Defects Research Laboratory, Levine, J. E., Wang, D., Chang, Q., & Zhao, X. (2023). Elevated levels of FMRP-target MAP1B impair human and mouse neuronal development and mouse social behaviors via autophagy pathway. Nature communications, 14(1), 3801. https://doi.org/10.1038/s41467-023-39337-0
-
Lear, B. P., Thompson, E. A. N., Rodriguez, K., Arndt, Z. P., Khullar, S., Klosa, P. C., Lu, R. J., Morrow, C. S., Risgaard, R., Peterson, E. R., Teefy, B. B., Bhattacharyya, A., Sousa, A. M. M., Wang, D., Benayoun, B. A., & Moore, D. L. (2023). Age-maintained human neurons demonstrate a developmental loss of intrinsic neurite growth ability. bioRxiv : the preprint server for biology, 2023.05.23.541995. https://doi.org/10.1101/2023.05.23.541995
-
He, C., Kalafut, N. C., Sandoval, S. O., Risgaard, R., Sirois, C. L., Yang, C., Khullar, S., Suzuki, M., Huang, X., Chang, Q., Zhao, X., Sousa, A. M. M., & Wang, D. (2023). BOMA, a machine-learning framework for comparative gene expression analysis across brains and organoids. Cell reports methods, 3(2), 100409. https://doi.org/10.1016/j.crmeth.2023.100409
-
Gandal, M. J., Haney, J. R., Wamsley, B., Yap, C. X., Parhami, S., Emani, P. S., Chang, N., Chen, G. T., Hoftman, G. D., de Alba, D., Ramaswami, G., Hartl, C. L., Bhattacharya, A., Luo, C., Jin, T., Wang, D., Kawaguchi, R., Quintero, D., Ou, J., Wu, Y. E., … Geschwind, D. H. (2022). Broad transcriptomic dysregulation occurs across the cerebral cortex in ASD. Nature, 611(7936), 532–539. https://doi.org/10.1038/s41586-022-05377-7
-
Gupta, C., Xu, J., Jin, T., Khullar, S., Liu, X., Alatkar, S., Cheng, F., & Wang, D. (2022). Single-cell network biology characterizes cell type gene regulation for drug repurposing and phenotype prediction in Alzheimer’s disease. PLoS Computational Biology, 18(7), e1010287. https://doi.org/10.1371/journal.pcbi.1010287
-
Giffin-Rao, Y., Sheng, J., Strand, B., Xu, K., Huang, L., Medo, M., Risgaard, K. A., Dantinne, S., Mohan, S., Keshan, A., Daley, R. A., Jr, Levesque, B., Amundson, L., Reese, R., Sousa, A., Tao, Y., Wang, D., Zhang, S. C., & Bhattacharyya, A. (2022). Altered patterning of trisomy 21 interneuron progenitors. Stem cell reports, 17(6), 1366–1379. https://doi.org/10.1016/j.stemcr.2022.05.001
-
Javadi, S., Li, Y., Sheng, J., Zhao, L., Fu, Y., Wang, D., & Zhao, X. (2022). Sustained correction of hippocampal neurogenic and cognitive deficits after a brief treatment by Nutlin-3 in a mouse model of fragile X syndrome. BMC medicine, 20(1), 163. https://doi.org/10.1186/s12916-022-02370-9
-
Gupta, C., Chandrashekar, P., Jin, T., He, C., Khullar, S., Chang, Q., & Wang, D. (2022). Bringing machine learning to research on intellectual and developmental disabilities: taking inspiration from neurological diseases. Journal of neurodevelopmental disorders, 14(1), 28. https://doi.org/10.1186/s11689-022-09438-w
-
Fathi, A., Mathivanan, S., Kong, L., Petersen, A. J., Harder, C., Block, J., Miller, J. M., Bhattacharyya, A., Wang, D., & Zhang, S. C. (2022). Chemically induced senescence in human stem cell-derived neurons promotes phenotypic presentation of neurodegeneration. Aging cell, 21(1), e13541. https://doi.org/10.1111/acel.13541
-
Lin, C. X., Li, H. D., Deng, C., Liu, W., Erhardt, S., Wu, F. X., Zhao, X. M., Guan, Y., Wang, J., Wang, D., Hu, B., & Wang, J. (2022). An integrated brain-specific network identifies genes associated with neuropathologic and clinical traits of Alzheimer’s disease. Briefings in bioinformatics, 23(1), bbab522. https://doi.org/10.1093/bib/bbab522
-
Nguyen, N. D., Huang, J., & Wang, D. (2022). A deep manifold-regularized learning model for improving phenotype prediction from multi-modal data. Nature computational science, 2(1), 38–46. https://doi.org/10.1038/s43588-021-00185-x
-
Huang, J., Sheng, J., & Wang, D. (2021). Manifold learning analysis suggests strategies to align single-cell multimodal data of neuronal electrophysiology and transcriptomics. Communications biology, 4(1), 1308. https://doi.org/10.1038/s42003-021-02807-6
-
Shen, M., Guo, Y., Dong, Q., Gao, Y., Stockton, M. E., Li, M., Kannan, S., Korabelnikov, T., Schoeller, K. A., Sirois, C. L., Zhou, C., Le, J., Wang, D., Chang, Q., Sun, Q. Q., & Zhao, X. (2021). FXR1 regulation of parvalbumin interneurons in the prefrontal cortex is critical for schizophrenia-like behaviors. Molecular psychiatry, 26(11), 6845–6867. https://doi.org/10.1038/s41380-021-01096-z
-
Nguyen, N. D., Jin, T., & Wang, D. (2021). Varmole: a biologically drop-connect deep neural network model for prioritizing disease risk variants and genes. Bioinformatics (Oxford, England), 37(12), 1772–1775. https://doi.org/10.1093/bioinformatics/btaa866
-
Jin, T., Rehani, P., Ying, M., Huang, J., Liu, S., Roussos, P., & Wang, D. (2021). scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks. Genome medicine, 13(1), 95. https://doi.org/10.1186/s13073-021-00908-9
-
Jin, T., Nguyen, N. D., Talos, F., & Wang, D. (2021). ECMarker: interpretable machine learning model identifies gene expression biomarkers predicting clinical outcomes and reveals molecular mechanisms of human disease in early stages. Bioinformatics (Oxford, England), 37(8), 1115–1124. https://doi.org/10.1093/bioinformatics/btaa935
-
Huang, K., Wu, Y., Shin, J., Zheng, Y., Siahpirani, A. F., Lin, Y., Ni, Z., Chen, J., You, J., Keles, S., Wang, D., Roy, S., & Lu, Q. (2021). Transcriptome-wide transmission disequilibrium analysis identifies novel risk genes for autism spectrum disorder. PLoS genetics, 17(2), e1009309. https://doi.org/10.1371/journal.pgen.1009309
-
RGS6 Mediates Effects of Voluntary Running on Adult Hippocampal Neurogenesis. Cell Reports, 32(5):107997. doi: 10.1016/j.celrep.2020.107997.
(2020). -
PLoS Computational Biology, 16(4):e1007677. doi: 10.1371/journal.pcbi.1007677.
-
Comparing Technological Development and Biological Evolution from a Network Perspective. Cell Systems, 10(3):219-222. doi: 10.1016/j.cels.2020.02.004.
(2020). -
Nguyen ND, Blaby IK, Wang D. (2019). ManiNetCluster: a novel manifold learning approach to reveal the functional links between gene networks. BMC Genomics. 2019 Dec 30;20(Suppl 12):1003. doi: 10.1186/s12864-019-6329-2.
-
Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, Won H, van Bakel H, Varghese M, Wang Y, Shieh AW, Haney J, Parhami S, Belmont J, Kim M, Moran Losada P, Khan Z, Mleczko J, Xia Y, Dai R, Wang D, Yang YT, Xu M, Fish K, Hof PR, Warrell J, Fitzgerald D, White K, Jaffe AE; PsychENCODE Consortium, Peters MA, Gerstein M, Liu C, Iakoucheva LM, Pinto D, Geschwind DH. (2018). Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science, 362(6420). pii: eaat8127. doi: 10.1126/science.aat8127.
-
Wang D, Liu S, Warrell J, Won H, Shi X, Navarro FCP, Clarke D, Gu M, Emani P, Yang YT, Xu M, Gandal MJ, Lou S, Zhang J, Park JJ, Yan C, Rhie SK, Manakongtreecheep K, Zhou H, Nathan A, Peters M, Mattei E, Fitzgerald D, Brunetti T, Moore J, Jiang Y, Girdhar K, Hoffman GE, Kalayci S, Gümüş ZH, Crawford GE; PsychENCODE Consortium, Roussos P, Akbarian S, Jaffe AE, White KP, Weng Z, Sestan N, Geschwind DH, Knowles JA, Gerstein MB. (2018). Comprehensive functional genomic resource and integrative model for the human brain. Science, 362(6420). pii: eaat8464. doi: 10.1126/science.aat8464.
-
Wang D, He F, Maslov S, Gerstein M. (2016). DREISS: Using State-Space Models to Infer the Dynamics of Gene Expression Driven by External and Internal Regulatory Networks. PLoS Computational Biology, 12(10):e1005146. doi: 10.1371/journal.pcbi.1005146.
-
Wang D, Yan KK, Rozowsky J, Pan E, Gerstein M. (2016). Temporal Dynamics of Collaborative Networks in Large Scientific Consortia. Trends in Genetics, 32(5):251-253. doi: 10.1016/j.tig.2016.02.006.
-
Yan KK, Wang D, Sethi A, Muir P, Kitchen R, Cheng C, Gerstein M. (2016). Cross-Disciplinary Network Comparison: Matchmaking Between Hairballs. Cell Systems, 23;2(3):147-157.
-
Wang D, Yan KK, Sisu C, Cheng C, Rozowsky J, Meyerson W, Gerstein MB. (2015). Loregic: a method to characterize the cooperative logic of regulatory factors. PLoS Computational Biology, 11(4):e1004132. doi: 10.1371/journal.pcbi.1004132.
-
Comparative analysis of regulatory information and circuits across distant species. (2014). Boyle AP, Araya CL, Brdlik C, Cayting P, Cheng C, Cheng Y, Gardner K, Hillier LW, Janette J, Jiang L, Kasper D, Kawli T, Kheradpour P, Kundaje A, Li JJ, Ma L, Niu W, Rehm EJ, Rozowsky J, Slattery M, Spokony R, Terrell R, Vafeados D, Wang D, Weisdepp P, Wu YC, Xie D, Yan KK, Feingold EA, Good PJ, Pazin MJ, Huang H, Bickel PJ, Brenner SE, Reinke V, Waterston RH, Gerstein M, White KP, Kellis M, Snyder M. Nature, 512(7515):453-6. doi: 10.1038/nature13668.