Marsha R. Mailick, PhD – Slide of the Week

 Fragile X syndrome (FXS), the most prevalent inherited cause of intellectual disability, remains under-diagnosed in the general population. Clinical studies have shown that individuals with FXS have a complex health profile leading to unique clinical needs. However, the full impact of this X-linked disorder on the health of affected individuals is unclear and the prevalence of co-occurring conditions is unknown.

Schizophrenia: Illuminating a potential treatment and gene regulation

A new study from the lab of Waisman investigator Xinyu Zhao, PhD, brings us one step closer to identifying treatments for psychiatric disorders like schizophrenia (SCZ) and illuminates the role of a specific gene in regulating the disorder.  “Regulation of Cav3.2 by schizophrenia risk gene FXR1 is critical for interneuron functions and social behaviors” was published in the journal Molecular Psychiatry in April. The study also identifies a specific gene as the regulator of a type of neurons that plays a critical role in the pathogenesis of certain psychiatric disorders.

Krishanu Saha, PhD – Slide of the Week

The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach.

The identities of enzymes: study further defines the function of a potential target for Alzheimer’s therapy

A new study from the lab of UW-Madison professor of medicine Luigi Puglielli, MD, PhD, opens a door to potential treatments for diseases of age, such as Alzheimer’s disease, by defining the roles of two enzymes that are imperative to protein production. “Endoplasmic reticulum acetyltransferases Atase1 and Atase2 differentially regulate reticulophagy, macroautophagy and cellular acetyl-CoA metabolism” was published in April in the journal Communications Biology.

Bernadette Gillick, PhD, MSPT, PT – Slide of the Week

Cerebral palsy is caused by a congenital brain lesion that occurs early in life with associated motor deficits which may result in lifelong disability. The brain has high neuroplastic potential early in life, stressing the importance for therapy. Non-invasive brain stimulation (NIBS) including transcranial direct current stimulation (tDCS) may enhance pediatric rehabilitation interventions through neuroplasticity.