Schizophrenia: Illuminating a potential treatment and gene regulation

A new study from the lab of Waisman investigator Xinyu Zhao, PhD, brings us one step closer to identifying treatments for psychiatric disorders like schizophrenia (SCZ) and illuminates the role of a specific gene in regulating the disorder.  “Regulation of Cav3.2 by schizophrenia risk gene FXR1 is critical for interneuron functions and social behaviors” was published in the journal Molecular Psychiatry in April. The study also identifies a specific gene as the regulator of a type of neurons that plays a critical role in the pathogenesis of certain psychiatric disorders.

The identities of enzymes: study further defines the function of a potential target for Alzheimer’s therapy

A new study from the lab of UW-Madison professor of medicine Luigi Puglielli, MD, PhD, opens a door to potential treatments for diseases of age, such as Alzheimer’s disease, by defining the roles of two enzymes that are imperative to protein production. “Endoplasmic reticulum acetyltransferases Atase1 and Atase2 differentially regulate reticulophagy, macroautophagy and cellular acetyl-CoA metabolism” was published in April in the journal Communications Biology.

Artificial intelligence can accelerate clinical diagnosis of fragile X syndrome

An analysis of electronic health records for 1.7 million Wisconsin patients revealed a variety of health problems newly associated with fragile X syndrome, the most common inherited cause of intellectual disability and autism, and may help identify cases years in advance of the typical clinical diagnosis.