Improved technique illuminates fragile X protein

Researchers at the Waisman Center made a significant step in understanding the function of a specific protein, FMR1, whose absence causes fragile X syndrome, or FXS. Waisman investigators Xinyu Zhao, PhD, and Anita Bhattacharyya, PhD, with research associate Meng Li, published their paper “Identification of FMR1-regulated molecular networks in human neurodevelopment” in the March issue of the journal Genome Research.

Connecting research and clinics to help those with autism

One of the goals of the study is to discover how genetic variations in young people with ASD are related to brain changes that lead to clinical symptoms of the disorder, such as impaired social interaction and repetitive behaviors.

“If you think about it, in between genes and clinical symptoms [of ASD] are changes in brain development,” says Lainhart. “Genes first impact brain development, and as a result of changes in how the brain develops, there are clinical manifestations of what we recognize as ASD.”