The identities of enzymes: study further defines the function of a potential target for Alzheimer’s therapy

A new study from the lab of UW-Madison professor of medicine Luigi Puglielli, MD, PhD, opens a door to potential treatments for diseases of age, such as Alzheimer’s disease, by defining the roles of two enzymes that are imperative to protein production.

Luigi Puglielli, MD, PhD – Slide of the Week

Nε-lysine acetylation in the ER is an essential component of the quality control machinery. ER acetylation is ensured by a membrane transporter, AT-1/SLC33A1, which translocates cytosolic acetyl-CoA into the ER lumen, and two acetyltransferases, ATase1 and ATase2, which acetylate nascent polypeptides within the ER lumen. Dysfunctional AT-1, as caused by gene mutation or duplication events, results in severe disease phenotypes. 

Luigi Puglielli, MD, PhD – Slide of the Week

Nε-lysine acetylation of nascent glycoproteins within the endoplasmic reticulum (ER) lumen regulates the efficiency of the secretory pathway. The ER acetylation machinery consists of the membrane transporter, acetyl-CoA transporter 1 (AT-1/SLC33A1), and two acetyltransferases, ATase1/NAT8B and ATase2/NAT8. Dysfunctional ER acetylation is associated with severe neurological diseases with duplication of AT-1/SLC33A1 being associated with autism spectrum disorder, intellectual disability, and dysmorphism.

Proposals by Waisman investigators selected for UW-Madison Cluster Hire Initiative

Several Waisman Center investigators played key roles in crafting research proposals that were recently selected as ‘cluster hires’ by the University of Wisconsin-Madison. UW–Madison’s Cluster Hiring Initiative was launched in 1998 as an innovative partnership …